Characterization of the interaction between neuronal RNA-binding protein HuD and AU-rich RNA.
نویسندگان
چکیده
Hu proteins have been shown to bind to AU-rich elements (AREs) in the 3'-untranslated region of unstable mRNAs. They can thereby inhibit the decay of labile transcripts by antagonizing destabilizing proteins that target these AU-rich sequences. Here we examine the sequence preferences of HuD to elucidate its possible role in counteracting mRNA decay. Using repeats of the prototype destabilizing sequence UU(AUUU)nAUU, we show that all three HuD RNA-binding domains participate in binding to AU-tracts that can be as short as 13 residues, depending on the position of the remaining As. Removal of the A residues, resulting in a poly(U)-tract, increased the affinity of HuD for RNA, suggesting that the presence of As in destabilizing elements might favor the recruitment of other proteins and/or prevent HuD from binding too tightly to AREs. In vitro selection experiments with randomized RNAs confirmed the preference of HuD for poly(U). RNA binding analysis of the related protein HuB showed a similar preference for poly(U). In contrast, tristetraprolin, an mRNA destabilizing protein, strongly prefers AU-rich RNA. Many labile mRNAs contain U-tracts in or near their AREs. Individual AREs may thus differentially affect mRNA half-life by recruiting a unique complement of stabilizing and destabilizing factors.
منابع مشابه
Novel recognition motifs and biological functions of the RNA-binding protein HuD revealed by genome-wide identification of its targets
HuD is a neuronal ELAV-like RNA-binding protein (RBP) involved in nervous system development, regeneration, and learning and memory. This protein stabilizes mRNAs by binding to AU-rich instability elements (AREs) in their 3' unstranslated regions (3' UTR). To isolate its in vivo targets, messenger ribonucleoprotein (mRNP) complexes containing HuD were first immunoprecipitated from brain extract...
متن کاملPromotion of exon 6 inclusion in HuD pre-mRNA by Hu protein family members
The Hu RNA-binding protein family consists of four members: HuR/A, HuB, HuC and HuD. HuR expression is widespread. The other three neuron-specific Hu proteins play an important role in neuronal differentiation through modulating multiple processes of RNA metabolism. In the splicing events examined previously, Hu proteins promote skipping of the alternative exons. Here, we report the first examp...
متن کاملFunctional and direct interaction between the RNA binding protein HuD and active Akt1
The RNA binding protein HuD plays essential roles in neuronal development and plasticity. We have previously shown that HuD stimulates translation. Key for this enhancer function is the linker region and the poly(A) binding domain of HuD that are also critical for its function in neurite outgrowth. Here, we further explored the underlying molecular interactions and found that HuD but not the ub...
متن کاملPositive feedback between RNA-binding protein HuD and transcription factor SATB1 promotes neurogenesis.
The mammalian embryonic lethal abnormal vision (ELAV)-like protein HuD is a neuronal RNA-binding protein implicated in neuronal development, plasticity, and diseases. Although HuD has long been associated with neuronal development, the functions of HuD in neural stem cell differentiation and the underlying mechanisms have gone largely unexplored. Here we show that HuD promotes neuronal differen...
متن کاملIdentification of RNA-binding sites in artemin based on docking energy landscapes and molecular dynamics simulation
There are questions concerning the functions of artemin, an abundant stress protein found in Artemiaduring embryo development. It has been reported that artemin binds RNA at high temperatures in vitro, suggesting an RNA protective role. In this study, we investigated the possibility of the presence of RNA-bindingsites and their structural properties in artemin, using docking energy ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 278 41 شماره
صفحات -
تاریخ انتشار 2003